LOWERING DRILLING COST, IMPROVING OPERATIONAL SAFETY, AND REDUCING ENVIRONMENTAL IMPACT THROUGH ZONAL ISOLATION IMPROVEMENTS OF HORIZONTAL WELLS DRILLED IN THE MARCELLUS SHALE

RPSEA and CSI Technologies
Outline

- Introduction
- Project Benefits
- Project Structure
- Summary and Further Information
Introduction

- Long term, comprehensive study
 - 2 phases over 2 years
- Working with an operator in the Marcellus Shale play
- Developing a process to achieve the goals of the project
 - Field observation
 - Lab testing
 - Engineering analysis
The goals of the project are to achieve the following in the Marcellus Shale play:

– Decrease drilling cost
– Decrease environmental impact
– Increase safety on and around the well site
Data Collection

- **Historical data**
 - 20 wells, 60 cement jobs
 - Drilling, cementing, and bond log data

- **Real time data**
 - 33 wells, 60 cement jobs
 - Testing cement samples from field
 - Facility conditions/practices
 - Operator concerns – Gas migration
Gas Migration Timeline

Immediate: Underbalanced well

3-12 hours: Gas migration through cement during set time

Days: Formation of a micro annulus or channel

Months - Years: Damaged or permeable cement

Short – Term

Long – Term
Data Collection: Results

• Observed and analyzed around 120 cement jobs in the Marcellus Shale play
• Drilling, cement jobs, well performance data
• Practices that greatly impact integrity of cement sheath
 ▪ Density and mixing
 ▪ Data acquisition and job execution equipment
 ▪ Job execution skills
Laboratory Testing

- Baseline testing – Field Samples
 - Blended cement + location water
 - Compared to pilot
- Specialized testing
 - Fluid migration analysis
 - Shrinkage/expansion testing
 - Permeability testing
 - Impact testing
 - Mechanical properties tests
 - Optimization testing
• Initial testing indicated most slurries did not pass
 ▪ High potential for gas migration
• Little to no fluid loss control
• Long gel transition times
• Displayed shrinkage
• Re-design system: Thixotropic cement
Laboratory Testing: Results

Re-designed Slurry Gas Migration Chart

- Gas Delivery
- Gas Recieving
- Mass Flow Rate

Graph showing volume (mL) and mass flow rate (SCCM) over time (hr:min) from 9:36 to 13:26.
Recommend Improvements

- Recommendations
 - Better communication
 - Consistent density control
 - Mix water temperature in optimal range

- Design recommendations
 - Cement stability
 - Gas migration reduction
 - Thixotropic systems
 - Cement durability

- These and other recommendations have improved cement sheath performance
 - Operator reported reduced sustained casing pressure
Identify Potential for Problems

- Statistical Analysis
- Working with University of Houston
- Developed several statistical models
 - Predict failure correctly 80% of the time
- Links various parameters to failure
 - Spacer volume
 - Centralizers
 - Annular volume
 - Mix water temperature
 - Cementing additives
Estimate Improvements

- Estimate improvements
 - Initial field assessment
 - Receiving well performance data over last 6 months
 - Analyzing recommendations
CSI will develop training material and have engineers and field advisors share the information in 1-3 day seminars with various groups:

- Engineering
- Field operations
- Service companies

Each group will be informed of the recommendations and provided procedures and personnel to help implement changes.
Assess Improvement

- **Field operations**
 - Field advisor presence in Pennsylvania

- **Laboratory testing**
 - Testing cement samples

- **Engineering analysis**
 - Reviewing and analyzing data provided by field and lab
 - Analyzing well performance through data provided by the operator
Quantify Effectiveness

- Quantify the effectiveness of new cementing protocol
 - Zonal isolation
 - Operations safety
 - Environmental impact
- Compare actual to predicted results
 - Use statistical analysis
Summary

- **Goals**
 - Lower drilling cost
 - Improve operational safety
 - Reduce environmental impact

- **Achieved through:**
 - Field observation, lab testing, engineering analysis
 - Developing recommendations
 - Implementation through training
Further Information

- RPSEA Link:
 - http://www.rpsea.org/1012219/

- Articles related to project:
 - Magazine
 - Oilfield Technology
 - “Horizontal Learning Curve” Vol 6, Issue 2
 - American Oil and Gas Reporter
 - “Zonal Isolation Critical in Developing Unconventional Resources” August 2013 issue
 - 1 SPE article
 - “Lowering Drilling Cost, Improving Operational Safety, and Reducing Environmental Impact through Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale” SPE1582346
DEVELOPMENT DRIVEN. FIELD FOCUSED.

THANK YOU

www.CSI-tech.net